We watch the local news every morning, and this week a story caught my interest: Alternatives to using road salt to avoid harmful risks. The key point of the story is that runoff from salting the roads can damage the surrounding environment, but adding beet juice to the solution can make it stick to the roads better. Reading up on the idea, I've found it's still debated whether this idea is really better for the environment, but the bit I was curious about is the ability to stay on the road.
Looking into ways I could model this, I found a paper discussing how droplets spread over time based on their surface tension. Their model was a bit more involved than I wanted to get, so I made some simplifications: The droplet takes the form of an ellipsoid with constant volume and circular base. This constrains the relationship between the height and the radius. The paper defines a value they call h* where gravity and surface tension balance. After my simplifications, it takes the form
where ρ is the density of the fluid, g is the acceleration due to gravity, and γ is the surface tension. For a given fluid, we can look up the surface tension and density. I decided to try a salt-water solution (γ, ρ), a sugar-water solution (γ, ρ), and molasses (γ, ρ).
The paper gives a t^1/5 form for the height of the drop, so we can start each of these fluids as a hemisphere and see how they spread as they approach their respective h* values:
This shows the sugar and salt spreading at roughly the same rate, contrary to the idea given in the report, so I expect my model is not capturing all their qualities. What I find really interesting though is that the thicker molasses actually spreads faster, because it's more dense that the other two, so gravity exerts a stronger force. Naturally, this brought to mind a bit of history from my home state, when a flood of molasses from a ruptured tank cut a swath of destruction through Boston!