Pages

Saturday, November 9, 2019

A Bolt of Cloth

The past couple weeks here have been non-stop drizzling rain – not the nicest farewell I could have – but it reminded me of a post from another of my favorite blogs, Futility Closet.

Wikipedia
Shortly after Benjamin Franklin created the first lightning rod, the idea caught on in Europe as a fashion accessory. There were umbrellas fitted with lightning rods (above), as well as hats, which trailed a wire for grounding. The information on these is a bit sparse, in particular whether they had ever been tested. This concerned me, since I saw some potential problems with the design, which I thought I'd explore today.

First, a quick explanation of how lightning rods work: During thunderstorms, charge collects in clouds. If enough charge builds up, it can overcome the resistance in the air, and create a channel down to the ground, where it discharges. This is lightning, which can carry lots of charge at high speed. Electricity takes the path of least resistance, and since humans and animals carry a lot of salty water, that makes us appealing routes to the ground. Tall buildings can also make good conductors, but since lightning carries so much energy, it can start fires. To protect ourselves, and our homes, we can make even better channels by topping buildings with a metal rod that connects directly to the Earth through a wire. Based on this, the lightning rod apparel doesn't seem unreasonable, but let's look at some issues.

Ground Current
For real lightning rods, the grounding wire is buried several feet deep to better distribute the charge, but that wouldn't be possible with a rod you carry with you. Instead, the wire just drags behind you, but that's no different from lightning striking the ground near you. Lightning carries a lot of charge, and it takes some space to dissipate, which can be just as dangerous as the initial strike. The National Weather Service webpage illustrates this with a charmingly-90s, yet still horrifying, animated GIF:


According to the Washington Post, ground current can be dangerous as far as 60 feet from the initial strike, so you'd need an awfully long tail on your umbrella/hat, not to mention the danger to anyone else who happens to be near the contact point.

Melting Wire
Since these are fashion accessories we're talking about, the Wikipedia article above mentions that the grounding wire was silver, but that could get expensive. One site I found lists the gauge for a grounding wire as 2 AWG, or about a quarter inch. There's also the problem that silver has a lower melting point than copper, 961.78 °C. That made me curious whether you'd be trading electrocution for being sprayed with molten silver.

The energy absorbed by the wire will be
where I is the current, 𝜌 is silver's resistivity, l is the length of the wire, A its area, and t is the duration of the strike. Using those values, along with a normal (rather than rope-sized) silver chain, and a height of 1.8 meters, I come up with 195 Joules, which is nowhere near enough to melt even a thin chain.

Magnetic Field
So at this point, you're still dead from the ground current, but your relatives will be able to salvage your silver chain. What about your smartphone? When current flows through a wire, it produces a magnetic field, according to

I couldn't find info for smartphones, but according to this site, credit cards could be damaged at a distance of 63 centimeters, and pacemakers at 25 meters! I'm not sure whether the short duration of the bolt would change these calculations, but it still doesn't seem like you or your electronics would be safe in a thunderstorm, even if you are wearing the height of 18th century fashion.

Big thanks to Futility Closet for pointing out this fleeting trend! I'm sure we would never use new technology in such a frivolous way, right?

Sunday, November 3, 2019

Riding a Charger

In high school, I got interested in electronics tinkering through the blog Hack-a-Day. I haven't done much myself for many years, but I still read the blog, and last week there was a post that seemed ripe for physics analysis:

The setup is that each player has a button they can press and release. While the button is pushed, a capacitor is charged by a voltage source, and when it's released, the capacitor switches to power a motor that drives the horse. You can see the full plans here, but this is a simplified version of the circuit:
Made using www.circuit-diagram.org
In the state shown above, the voltage source (V) begins to charge the capacitor (C). At first, this would act like a short circuit, so we add a resistor (R) to limit the current flow. For this type of circuit, the charge on the capacitor is given by
The voltage over a capacitor is proportional to the charge stored in it, so as the capacitor charges up, it pushes back more and more on the voltage source, which slows the charge that's added. That leads to an asymptotic behavior:


When the button is released, the switch in the diagram above flips to the other side of the circuit, and the capacitor begins discharging through the motor. This acts like a resistor, but converts the charge flowing through it to motion, driving the horse. Once again, we have an asymptotic relationship, since as the charge flows out of the capacitor, it can't push as strongly:
Here, Q0 is the amount of charge we put on in the first step. This is similar to the plot above, but decaying to zero:


This made me curious if I could come up with the optimal strategy for getting the horse to the end as quickly as possible. That translates into the most charge in the least amount of time, or the maximum current. If we ignore the initial charge up, we can think of switching between some maximum and minimum charge:
The average current through the motor over one cycle is
where tC and tD are the charge and discharge times. The expressions for those are a bit ugly, so I won't write them out here. Rather than try to get the exact maximum current, we can try a variety of values for Qmin/max:
The best option appears to be keeping the capacitor at ~50% charge by rapidly flipping the switch between the two states. As with many games, the answer lies in hyperactivity!

Saturday, October 26, 2019

In France It's "Quantum Royale"

Earlier this week, Google announced it had achieved "quantum supremacy", so I thought I'd discuss a bit about what quantum computing is, and what Google managed to do.

In classical computers, like the one I'm writing this on, information is stored in bits, which have a value of either 0 or 1. These bits can be combined in different ways to perform calculations. The time it takes to do a calculation depends on the number of steps, which in turn depends on the number of bits.

Quantum computers have quantum bits, or qubits, which represent entangled particles. That means the states of different qubits can depend on each other, and they can (temporarily) take on values between 0 and 1, representing a superposition of the two. This can be exploited to perform calculations exponentially faster than a classical computer could.

One of the exemplary problems where quantum computers are useful is prime factorization. This is the problem of finding all the prime numbers that divide a given number, which you can imagine as a tree:
Factoring 24 into 3x2x2x2
Typically, this is done by trying each possible factor, until we find one that divides the number, and then repeating for the results. In essence, quantum computing lets us try all the possibilities at once, and only keep the ones that work. The actual algorithm is a bit more complicated, but we're just skimming the concept here.

Why should we care about factoring numbers? Current encryption algorithms are based on the product of two large primes. You share the product, which others can use to encrypt a message for you, but the only way to decrypt it is to use the individual factors, which you keep secret. With quantum computers though, anyone can factor the product you gave them, and read your messages.

Google published a paper in the prestigious journal Nature claiming to have reached "quantum supremacy" (the originator of the phrase now regrets choosing it). The trouble with quantum systems is that they're fragile – Any disturbance from outside the system will affect the states of the qubits, invalidating the calculation. This risk increases with the number of qubits, so the question becomes, can we maintain the integrity of a system with enough qubits to be useful?

Quantum supremacy refers to the point where we can build quantum computers with the necessary number of qubits to do calculations that are impossible on classical computers. Google claims to have reached that point, with their 53-qubit Sycamore computer. They solved a problem in 200 seconds that they say would take a classical computer 10,000 years. IBM disputes this calculation, claiming that the classical computer would only take a few days.

It remains to be seen who is right, but it's still cool to see a project with such world-changing potential coming into being.